Anti bacterial activity and GC-MS analysis of ripened and un ripened cv. Amruthapani (Musa x paradisiaca L) Banana Extracts

N. Jyothirmayi ¹, S.H.R.K. Prasad ², N. Mallikarjuna Rao ³ *

¹Department of Biotechnology, K.L University, Guntur, India
²Department of Biotechnology, Aksum University, Ethiopia
³Department of Biochemistry, Vishnu Dental College, Bhimavaram, India

Abstract
The present work assesses the antibacterial activity of solvent extracts (aqueous, ethanol, methanol and hexane) of ripe and unripe fruit pulps of Musa x paradisiaca L. cv. Amruthapani against Gram-positive (Bacillus cereus, Micrococcus flavus) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) pathogenic bacteria by Kirby-Bauer method along with the minimum inhibitory concentrations (MICs). The phytochemical composition of non-polar solvent extract, hexane, was analyzed, qualitatively, by Gas Chromatography – Mass Spectrometry (GC-MS). The aqueous unripened and ripened pulp extracts of Amruthapani showed minimum inhibition at highest tested concentration against all the test organisms. Ethanolic ripened extracts exhibited good activity against all the test organisms in comparison with unripened pulp extracts and also the methanolic extracts. Hexane extracts showed very little activity against all test organisms even at high concentrations. A wide spectrum of bioactive compounds like phenols, ketones, aldehydes, alkanes, esters and terpenes were found to be present in the hexane extract and may be responsible for antibacterial activity exhibited.

Key words: Antibacterial, GC-MS, Gram-positive, Gram-negative, Musa x paradisiaca L cv. Amruthapani, Minimum Inhibitory Concentration (MIC), Zone of Inhibition.

*Corresponding Author: Dr. Nanduri Mallikarjuna Rao, Professor and Head, Department of Biochemistry, Vishnu Dental College, Bhimavaram, Andhra Pradesh, India.

Received: June 1, 2014 Accepted: August 29, 2014. Published: September 20, 2014. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Introduction
Recent trends focus on the isolation, characterization and utilization of natural compounds as potential disease preventing agents. As the sources available for this kind of compounds are predominantly plants, especially the edible varieties, it would be worthwhile investigating the commonly consumed plants and/or their products.

Musa x paradisiaca L., commonly known as banana, is a widely consumed fruit all over the world. India is the largest producer and consumer of banana with an annual production of 11.7 million tonnes on 404,000 Ha, contributing to 27% of the world production and about 37% of the total fruit crop production in the country. A number of therapeutic uses of various cultivars of banana have been reported and documented, conventionally, worldwide. The term ‘Banana’ is a highly general term that encompasses the hundreds of cultivars available. Amruthapani is one of the cultivars of Musa x paradisiaca L. that is specific to the Indian sub-continent. Because of its white, firm and characteristically flavoured taste when ripe, this cultivar is liked by many.

Experiments carried out by [1-4] on various parts of banana plant (pulp, peel, petioles and leaves in ripe/unripe form using different solvents) are proof of the antimicrobial activity present in banana. Also, works of [5-7] have shown the presence of various phytochemicals that contribute to antimicrobial activity in the pulp and sap of different banana cultivars. However, no research has been carried out on Amruthapani (otherwise Silk Fig), a much-loved cultivar of Banana in the Indian sub-continent.
Hence, the present study was initiated to evaluate the antibacterial activity and phytochemical content (qualitative) of pulp extracts of Musa x paradisiaca L cv. Amruthapani in their ripe and unripe forms against pathogenic bacteria, in vitro.

Traditionally documented Medicinal uses of banana (Musa spp. in general) [8]: Flowers extracts used to treat bronchitis, dysentery and on ulcers; Cooked flowers syrup used against Diabetes; Astringent plant sap used as a medication to cure hysteria, epilepsy, leprosy, fevers, haemorrhages, acute dysentery and diarrhoea, and on haemorrhoids, insect and other stings and bites; whereas young leaves used as poultices on burns and other skin afflictions; the astringent ashes of the unripe peel and leaves works against dysentery, diarrhoea and malignant ulcers; Roots are an age-old application in digestive disorders, dysentery and other ailments and Seed mucilage cures ophthalmic cataracts and diarrhoea.

Materials and Methods

Plant: Musa cultivar – Amruthapani

Tested material: Unripened and ripened pulp extracts of Musa x paradisiaca L. cv. Amruthapani prepared using polar and non-polar solvents – distilled water, ethanol, methanol and hexane. The extracts were obtained using a mortar and pestle, filtered, concentrated to dryness under vacuum and then collected. The left over powder was considered 100%. Different concentrations of the extracts such as 100, 250, 500, 750 and 1000 μg/ml were prepared by re dissolving the extract powder in the same solvent and tested[9].

Studied activities: The minimum inhibitory concentration was determined by Vander-Berghe Da and Vlietinck (Agar Dilution) method [10-13]. Antibacterial activity was studied by Bauer AW et al. (Diffusion method) method [14-17]. Triplicates of the assay were run for standardizing the result. Simultaneously the activity of standard antibiotic, Chloramphenicol (30 μg/ml) and solvents (served as controls) was also tested against the microorganisms under study in similar conditions.

Preliminary Phytochemical analysis was carried out for the non-polar solvent (Hexane) extract by Gas Chromatography-Mass Spectrometry GC-MS unit of Agilent Technologies 6890, mass detector model 5973 run in spilt mode was used for assay with MS source at 230°C, MS Quadrupole at 150°C and Helium as carrier gas at 80 bar pressure.

Identification of components

The results of the GC-MS analysis were interpreted using the database of National Institute Standard and Technology (NIST) having more than 62,000 patterns. The mass spectrum of each of the unknown compound was compared with the spectrum of the known compounds stored in the NIST library. The name, molecular weight, structure, nature of compound and activity of the compounds were determined.

Used bacterial strains

Escherichia coli (NCIM 2931), Pseudomonas aeruginosa (NCIM 5029), Bacillus cereus (NCIM 2106) and Micrococcus flavus (NCIM 2376) obtained from National Chemical Laboratory, Pune, India. The characteristics of the test micro-organisms are given in (Table 1).

Table 1: Bacterial strains used in the present study

<table>
<thead>
<tr>
<th>S.No</th>
<th>Microorganism</th>
<th>Characteristics</th>
<th>Diseases caused</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Escherichia coli (NCIM 2931)</td>
<td>Gram negative rod-shaped bacteria, facultative anaerobe.</td>
<td>Urinary tract infections, gastroenteritis, neonatal meningitis, pneumonia</td>
</tr>
<tr>
<td>2</td>
<td>Pseudomonas aeruginosa (NCIM 5029)</td>
<td>Gram-negative, aerobic, rod-shaped bacteria with unpolar motility</td>
<td>Urinary tract infections, respiratory infections, dermatitis, soft tissue infections, opportunistic human pathogen</td>
</tr>
<tr>
<td>3</td>
<td>Micrococcus flavus (NCIM 2376)</td>
<td>Gram - positive cocci, non - motile, aerobic</td>
<td>Urinary tract infections, respiratory infections</td>
</tr>
<tr>
<td>4</td>
<td>Bacillus cereus (NCIM 2106)</td>
<td>Gram-positive, rod-shaped, swarming motility, facultative anaerobe</td>
<td>Food-borne illnesses, nausea, vomiting and diarrhoea</td>
</tr>
</tbody>
</table>

Results

Determination of zone of inhibition of Musa x paradisiaca L. cv. Amruthapani

The zone of inhibition acquired by testing the solvent extracts – aqueous, ethanol, methanol and hexane, of unripened and ripened pulp of Musa x paradisiaca L, cv Amruthapani, at given concentrations against the test organisms can be seen in Graphs 1, 2, 3 and 4, respectively.

Unripened pulp solvent extracts - The aqueous extract showed little activity against all test
organisms at highest tested concentration of 1000 µg/ml. The zone of inhibition acquired by testing the ethanolic extracts of Musa x paradisiaca L. cv Amruthapani was such that initial activity was exhibited by the extract at 250µg/ml against P. aeruginosa and at 500µg/ml against all others. The methanolic extract exhibited activity beginning at the lowest concentration of 100µg/ml against B. cereus. Least zone of inhibition was observed to be at 250µg/ml against E. coli and highest activity was observed at 1000 µg/ml against M. flavus. The hexane solvent extract exhibited by the extract on all test organisms beginning at 750µg/ml.

Ripened pulp solvent extracts - Similar to unripened extracts, the ripened aqueous extracts also showed minimum activity against all test organisms at the highest concentration of 1000µg/ml. The zone of inhibition acquired by testing the ethanol extract was as follows - minimum activity was exhibited by the extract at 250µg/ml against E. coli and P. aeruginosa and maximum zone of inhibition was seen against E. coli and M. flavus at 1000µg/ml. The activity exhibited by this extract at 1000µg/ml against E. coli was greater than that of the reference antibiotic, Chloramphenicol. The methanolic extracts of the same cultivar showed mediocre zones of inhibition at the least concentration of 100µg/ml against B. cereus, followed by E. coli at 250µg/ml, ending with the highest zone of inhibition at 1000µg/ml against M. flavus. Figure 1 shows the Zone of inhibition of methanolic extract of ripened Musa x paradisiaca L. cv Amruthapani on Escherichia coli. The activity exhibited by hexane solvent extract was very little compared to other extracts but, better than that of the unripe pulp extract. Here also, activity against all test organisms was seen at 750µg/ml concentration, the best being on M. flavus.

Minimum Inhibitory Concentration (MIC)

MIC of unripened and ripened pulps of Musa x paradisiaca L. cv Amruthapani is summarized in Table 2.

Phytochemical analysis

The primary phytochemical screening of non-polar solvent extract i.e. hexane extract, of the selected ripe Musa x paradisiaca L cv. Amruthapani by Gas Chromatography – Mass Spectrometry (GC-MS) method indicated the
presence of secondary plant metabolites such as esters, ketones, phenols, aldehydes and other hydrocarbons. The chromatogram obtained from this analysis can be seen in Fig 3. The chromatogram has a total of ten peaks at various retention times. A list of the various compounds identified at the different retention times, their molecular mass, nature and activity are given in Table-3.

Discussion

Plants are known to have beneficial therapeutic effects documented in Traditional Indian System of Medicine. In the present study, aqueous, ethanolic, methanolic and hexane extracts of Musa × paradisiaca L. cv. Amrutapani, were tested against selected Gram positive and Gram negative bacteria species. The results obtained indicate that the different extracts of the cultivar under study exhibit antibacterial activity and among the various extracts, ethanolic extracts have shown better activity as compared to other extracts with respect to similar bacteria. Also, from the values of zones of inhibition obtained, it was observed that the ethanol fraction was more potent in the case of both ripened and unripe banana extracts.
unripened *Musa x paradisiaca* L. cv Amruthapani extracts. This may partly indicate that the pulp extracts of *Musa x paradisiaca* L. cv. Amruthapani have broad inhibitory activities to pathogenic microorganisms and are promising potential antibacterial agents from natural plant sources [18].

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Extract</th>
<th>MIC value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amruthapani</td>
<td>Unripe Aqueous</td>
<td>1000µg/ml 500µg/ml (all), 250µg/ml (P. aeruginosa)</td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>100µg/ml (B. cereus), 250µg/ml (E. coli), 500µg/ml (M. flavus and P. aeruginosa)</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>750µg/ml for all test organisms</td>
</tr>
<tr>
<td>Ripe Aqueous</td>
<td>1000µg/ml 250µg/ml (E. coli and P. aeruginosa); 500µg/ml (others)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>100µg/ml (B. cereus), 250µg/ml (E. coli), 500µg/ml (M. flavus and P. aeruginosa)</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>750µg/ml for all test organisms</td>
</tr>
<tr>
<td></td>
<td>He xane</td>
<td>750µg/ml for all test organisms</td>
</tr>
</tbody>
</table>

Table 3: GC-MS analysis of Ripe Hexane pulp extracts of *Musa x paradisiaca* L cv Amruthapani

Table 2: Minimum Inhibitory Concentration (MIC) values of unripened and ripened pulps’ extracts of *Musa x paradisiaca* L cv Amruthapani.
Preliminary phyto-chemical screening of plants is very useful for determination of the active constituents in different solvents and their yields. Many primary metabolites lie in their impact as precursors or pharmacologically active metabolites in pharmaceutical compounds [19]. The responsibility of antibacterial activity exhibited by the extracts can be attributed to these chemicals. Further phyto-chemical studies are required to determine the purified fractions/bioactive compounds responsible for the antibacterial activities of these species, which could serve as useful sources for new antimicrobial agents [18].

Conclusion

The ever-growing resistance of microbes to existing drugs and also the inefficiency of the drugs have given rise to an era of research wherein plants are the primary source of new and potent antimicrobial compounds [20]. Musa x paradisiaca L. cv Amruthapani, a commonly consumed and commercially important plant of India, is a rich source of bioactive compounds with diverse chemical structure. As of now, little work has been done on the biological activity and plausible medicinal applications of the phytochemical compounds and hence extensive investigation is needed to exploit the bioactive principles of local varieties of Musa x paradisiaca L. cv Amruthapani for therapeutic utility. In the present study antibacterial activity of Musa x paradisiaca L. cv Amruthapani pulp extracts towards significant pathogenic microbes has been investigated. Further detailed investigations may lead to development of new antibiotics of high potency. The present study suggests that the ethanol extract of Musa x paradisiaca L. cv Amruthapani plants is a potential source of natural antibacterial agents. After this screening experiment, further work should be performed to describe the antibacterial activities in more detail as in vivo. Also phyto-chemical studies will be necessary to isolate the active constituents and evaluate the antibacterial activities against a wide range of bacterial population [21].

Acknowledgements

The authors are grateful to Dr V Himabindu, HOD, Department of Environmental Chemistry, JNTU-H, Hyderabad, for the constant support and encouragement extended. The authors are also grateful to the Management of K L University, Guntur, for providing the basic facilities required for completing the work.

References

10. Vander-Berghe Da; Vlietinck N; Screening methods for antibacterial and antiviral agents

