Abstract

Typhoidal Salmonellae are invasive and life-threatening human pathogens that cause typhoid and paratyphoid fever in many low income countries globally. People consuming contaminated food, water or working with infected livestock have the potential to become infected with Salmonella and may require antimicrobial therapy. Antimicrobial therapy in salmonellosis has become a global public health problem due in part to the inappropriate use of antimicrobial agents. The objective of this study was to characterize antimicrobial drug resistance in Salmonella serovar Typhi and Salmonella serovar Paratyphi isolates obtained from January 2010 to December 2012 during routine patient care at the University Teaching Hospital in Lusaka, Zambia. Seventy-seven Salmonellae from diagnostic faecal and blood samples of patients were identified by biochemical, serological and PCR testing. The isolates were analysed for drug susceptibility by the minimum inhibition concentration method, PCR drug resistance gene detection and DNA sequencing of integron class I. All the fifty Salmonella Typhi were resistant to sulphamethoxazole, ampicillin, trimethoprim and, cotrimoxazole, while 84% were resistant to chloramphenicol, and 4% to both ciprofloxacin and amoxicillin + clavulanic acid. Similarly, all the 27 Salmonella Paratyphi B isolates were resistant to ampicillin, cotrimoxazole, chloramphenicol, sulfamethoxazole trimethoprim and streptomycin, while 11.1% were resistant to amoxicillin + clavulanic acid and 7.4% to both ciprofloxacin and tetracycline. Multidrug resistance was observed in 84 % of Salmonella Typhi and 100% of Salmonella Paratyphi B isolates. Class 1 integron containing the dfrA7 gene was detected in 66% of Salmonella Typhi (66%) and 81.5 of Salmonella Paratyphi B. In summary, multidrug resistant Salmonella Typhi and Paratyphi, harbouring class I integron cassettes, are emerging in Lusaka, leaving little treatment options. Therefore, regular monitoring of antibiotic susceptibility patterns is vital in guiding appropriate therapy and prevention of further emergence of drug resistance strains.

Key Words: Integron, Multidrug Resistance, Salmonella serovar, S. Paratyphi, S. Typhi
contaminated food and water, and it is sometimes associated with chronic carriers and food handlers [4-6]. It is estimated that there are approximately 27 million cases and over 200,000 deaths worldwide (4). However, the data on which these estimates are based are limited, and come from isolated studies in countries with healthcare structures capable of assessing the burden of salmonellosis, and accurate figures are usually compounded by limitations in diagnostic capacity [4,6-10].

Cases of enteric fever are often severe and require effective antibiotic therapy for treatment [4, 11-13]. However, a number of Salmonella isolates from human patients and food animals are resistant to multiple antimicrobial drugs. Over the years, chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole have been the drugs of choice for the treatment of enteric fever, but have now become ineffective, leading to a rapid increase in the number of multidrug-resistant (MDR) strains of Salmonella [14-19]. Fluoroquinolones and extended spectrum cephalosporins are now drugs of choice for typhoid fever, while azithromycin is an alternative treatment option for uncomplicated typhoid cases [20-27]. This resistance is mainly attributed to the inappropriate use of antimicrobial drugs in human and veterinary medicine that creates selective pressure for the proliferation of resistant bacteria [4,9,16,28]. Potential routes of human exposure to resistant strains of Salmonella include consumption of unpasteurized dairy products, undercooked meat, manure-contaminated produce or through direct contact with animals and their products [29].

Resistance to quinolones in Salmonella species is mostly attributed to point mutations in the quinolone resistance-determining regions (QRDRs) of the target genes gyrA, gyrB, parC, and parE [30-32] or because of decreased permeability to the agents or over-expression of efflux pumps [33-36]. More recently qnr genes, the products which inhibit quinolone action by binding to gyrA and gyrB subunits, have been reported [21,32]. Nucleotide changes in the QRDR of gyrA in Salmonella are more common than mutations in gyrB or topoisomerase genes [19,37,38]. In S. Typhi, nucleotide substitutions at Ser-83, Asp-87, Glu-133, Asp-76, Phe-72, Leu-55, and Gln-106 of gyrA gene have been previously reported, with mutation at codon 83 being the most common [19,38].

Antibiotic resistance genes can be propagated by mobile genomic cassettes, including integrons and transposons that can reside on bacterial chromosomes or plasmids [21,39,40,41]. Plasmid-associated integrons are frequently implicated in MDR Salmonella [42,43]. There are five different classes of integrons harbouring different integrated gene cassettes, of which Class 1 is the most commonly associated with enteropathogens [44-46]. Integrons are made up of sequences of conserved DNA that contain an integrase gene, IntI, which encodes the integrase enzyme responsible for causing the incorporation of gene cassettes via site-specific gene recombination mechanisms [46]. All the integrons comprise two conserved segments (5’CS) and (3’CS), an integrase gene, a variable region and the cassette integration site, attI. The 3’CS region contains three open reading frames (ORFs): qae I gene which confers resistance to quaternary ammonium compounds and sulI gene which confers resistance to sulphonamides [46,47].

The continuous monitoring of Salmonella isolates resistant to commonly used antibiotics is necessary because of public health implications of a potential spread of resistant organisms. However, little research has been conducted on the characterisation of antibiotic resistant Salmonella in low income countries, such as Zambia, because of limited diagnostic capacity. Therefore, the objective of this study was to characterise antimicrobial drug resistance patterns of Salmonella enterica serovars obtained from clinical specimens from 2010-2012 at the University Teaching Hospital, in Lusaka, Zambia.

Materials and Methods

Bacterial Isolates

Seventy-seven single clinical isolates of S. Typhi and S. Paratyphi B strains obtained from faecal and blood specimens from January 2010 to December 2012 at the University Teaching Hospital in Lusaka, Zambia as part of the routine hospital care were analysed in this study. Bacterial isolates were stored in Brain Heart Infusion Broth (Oxoid Diagnostics, UK) containing 20% glycerol at -80°C for the duration of the study. For experimental purposes, isolates were cultured on MacConkey agar and Xylose Lysine Deoxycholate agar (Merck, Hamburg, Germany) for 18-24 hours at 37°C. All presumptive positive suspected Salmonella colonies were identified using biochemical tests, followed by serogrouping using slide agglutination with hyperimmune polyvalent O antisera (Remel Europe
Antimicrobial Susceptibility Testing

Antibiotic resistance profiles were determined using the Sensititre System TREK Diagnostic Systems Ltd., East Grinstead, England, which is based on the classical broth microdilution method, according to manufacturer’s protocol. Briefly, one to two isolated colonies from freshly streaked plates were suspended in 5 ml of demineralized water to obtain a 0.5 McFarland density. Ten microliters of the bacterial water suspension was added to 11 ml of Cation Adjusted Mueller-Hinton broth (CAMHB). A 50 l aliquot of the CAMHB cell suspension was dispensed into each well of a 96-well plate and tested against a panel consisting of 17 antibiotics: amoxicillin/clavulanic Acid (AMC), ampicillin, Apramycin (APR), ceftaxime (CTX), cefotiofur (FOT), chloramphenicol (CHL), ciprofloxacin (CIP), colistin (COL), flofervonil (FFN), gentamicin (GEN), nalidixic acid (NAL), neomycin (NEO), spectomycin (SPE), streptomycin (STR), sulfamethoxazole (SMX), tetracycline (TET), and trimethoprim (TMP). In addition to susceptibility to trimethoprim-sulphamethoxazole (cotrimoxazole) (TS) was determined using the Kirby-Bauer disk diffusion method, which is based on the classic "board lysis" protocol as recommended by the manufacturer. The quality control strain for Salmonella enterica Serovars Typhi and paratyphi B in Zambia. Jour Med Sc & Tech; 4(1): Page No 12.

Integron Screening and DNA Sequencing

Bacterial DNA was extracted on the easyMag instrument (bioMérieux Inc, Durham, NC, USA) using the “off-board lysis” protocol as recommended by the manufacturer. The isolates were screened for class 1 integrons by PCR as described previously using primers intF: GGCATCCAAGCAGCAAG and intR: AAGCAGACTTGACCTGA. Briefly, amplification was performed in a final volume of 25 l. Each reaction mixture contained 5.5 l molecular grade water, 12.5 l PCR master mix 2X (0.05/μl 1 Taq DNA polymerase, reaction buffer, 4 mM MgCl₂, 0.4 mM of each dNTP) (Thermo Fisher Scientific Inc, SA), 2.5 l of each primer and 2 l of bacterial DNA. Amplification reaction was carried on a GeneAmp System 2700 PCR thermocycler (Applied Biosystems, Foster City, CA, USA) with an initial denaturation at 94°C for 5 minutes, followed by 35 cycles of denaturation at 94°C for 30 seconds, annealing for 55°C for 30 seconds and extension for 72°C for 2 min 30 seconds, and then extension for 10 minutes at 72°C. Amplified products were then purified using Qiaquick purification columns (QIAGEN, Crawley, United Kingdom) according to the manufacturer’s instructions.

Sequencing was performed using the above-named primers. Forward and reverse linear amplification was performed in 10μl using 2μl of the purified PCR product (about 20 to 200ng), 2μl BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA), 1μl BigDye Sequencing Buffer (Applied Biosystems, Foster City, CA, USA) 1μM of each primer. Linear amplification consisted of 25 cycles of denaturation at 96°C for 10s, annealing at 60°C for 30s and elongation at 72°C for 60s using the iCycler Thermocycler (Bio-Rad, Hercules, CA, USA). The entire extension products were transferred into 80ml of freshly prepared precipitation solution (3ml of 3M sodium acetate [pH 4.6], 62.5ml of non-denatured 95% ethanol and 14.5ml deionised water), incubated for at least 1hr at room temperature and centrifuged at 14000rpm for 20min. After carefully removing the supernatant, 250μl of 70% ethanol was added to the pellet, vortexed and the contents re-centrifuged at 14000rpm for 8min. The ethanol was carefully aspirated and the pellet air-dried for 15min at room temperature. The samples were analysed on an ABI PRISM 3730XL DNA analyser (Applied Biosystems, Foster City, CA, USA). The DNA sequence reads were edited using Ridom TraceEdit software (Ridom Bioinformatics GmbH, Würzburg, Germany) and used to search the National Center for Biotechnology Information (NCBI) RefSeq database using BLASTN software (http://www.ncbi.nlm.nih.gov/BLAST).

Ethics approval: Ethics approval for this study was granted by the University of the Zambia Biomedical Research Ethics Committee.
Results
Antimicrobial Susceptibility of S. Typhi and S. Paratyphi B Isolates

Among the antimicrobials tested, S. Typhi and S. Paratyphi B were 100% resistant to ampicillin, sulfamethoxazole, trimethoprim, cotrimoxazole and streptomycin. In addition S. Paratyphi B was also 100% to chloramphenicol and spectinomycin, while S. Typhi was 84% resistant to chloramphenicol. S. Typhi was least resistant to ciprofloxacin (4%), spectinomycin (4%), amoxicillin and clavulanic acid (2%), tetracycline (2%), while S. Paratyphi B was least resistant to gentamycin (3.7%), ciprofloxacin (7.4%), tetracycline (7.4%), colistin (11.1%), amoxicillin and clavulanic acid” (11.1%) (Figures 1 and 2). All the isolates were at least resistant to five or more antimicrobial drugs. The majority of the S. Typhi isolates (72%) were resistant to five antibiotics, while 74.1% S. Paratyphi B isolates were resistant to seven antimicrobial drugs (Table 1). Multidrug resistance (MDR) was observed in 84% of S. Typhi and 100% of S. Paratyphi B isolates. Multidrug resistance to Salmonella was defined as being resistance to ampicillin, chloramphenicol and cotrimoxazole.

Integron Screening and DNA Sequencing

PCR-based detection of class 1 integrons was performed on all the 77 Salmonella isolates analysed. Of the fifty S. Typhi isolates, 33 (66%) carried class I integrons, while 22 (81.5%) of the 27 S. Paratyphi B isolates analysed were also positive for the class I integrons (Figure 3). The integrons showed variable fragment sizes, and the most common size among the two serovars was 800bp. Sequence analysis of the integrons revealed that in the 29/50 (77.8%) integron positive S. Typhi had a common resistance pattern of ampicillin-chloramphenicol-sulfamethoxazole-trimethoprim-cotrimoxazole, while those of S. Paratyphi B (22/27, 81.5%) had the ampicillin-chloramphenicol-spectinomycin-sulfamethoxazole-trimethoprim-cotrimoxazole. The most common gene cassette detected in both serovars was that of dfrA7.

Figure 1: Antibiotic resistance profile of S. Typhi. AMC-amoxicillin/clavulanic acid, AMP-ampicillin, CHL-chloramphenicol, CIP-ciprofloxacin, NAL-nalidixic acid, SPE-spectinomycin, STR-streptomycin, SMX-sulfamethoxazole, TET-tetracycline, TMP-trimethoprim and TS-cotrimoxazole. S. Typhi was completely susceptible to apramycin, cefotaxime, nalidixic acid, florfenicol and ceftiour.

Figure 2: Antibiotic resistance profile of S. Paratyphi B. AMC-amoxicillin/clavulanic acid, AMP-ampicillin, CHL-chloramphenicol, CIP-ciprofloxacin, COL-colistin, GEN-gentamycin, SPE-spectinomycin, STR-streptomycin, SMX-sulfamethoxazole, TET-tetracycline, TMP-trimethoprim and TS-cotrimoxazole. S. Paratyphi B was completely susceptible to apramycin, cefotaxime, nalidixic acid, florfenicol and ceftiour.

Figure 3: PCR of class 1 integron among clinical isolates of S. Typhi and S. Paratyphi. M: 100bp Marker, Lane 1: Negative control, Lane 2: Positive control, Lane 3-10, Positive clinical isolates.

When the association of antimicrobial drug resistance and the presence of integron class I was investigated, 33 (66%) of the integron-positive isolates were found to be statistically more resistant to chloramphenicol than the 17(34%) integron-negative isolates (p=0.03) (Table 2). This was only
observed in S. Typhi isolates. There was no statistically significant difference with the other antibiotics.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>No. of Isolates (%)</th>
<th>Resistance to antimicrobial drugs (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Typhi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMP-CHL-CIP-NAL-STR-SMX-TMP-TS</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>AMC-AMP-CHL-SMX-STR-TMP-TS</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>AMP-CHL-SMX-STR-TET-TMP-TS</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>AMP-CHL-SPE-STR-SMX-TMP-TS</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>AMP-CHL-SMX-STR-TMP-TS</td>
<td>72</td>
<td>6</td>
</tr>
<tr>
<td>AMP-SMX-STR-TMP-TS</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>S. Paratyphi B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMP-CHL-COL-SPE-SMX-STR-TMP-TET-TS</td>
<td>7.4</td>
<td>9</td>
</tr>
<tr>
<td>AMP-CHL-COL-SPE-SMX-STR-TMP-TS</td>
<td>3.7</td>
<td>8</td>
</tr>
<tr>
<td>AMP-CHL-GEN-SPE-SMX-STR-TMP-TS</td>
<td>3.7</td>
<td>8</td>
</tr>
<tr>
<td>AMC-AMP-CHL-SPE-SMX-STR-TMP-TS</td>
<td>3.7</td>
<td>8</td>
</tr>
<tr>
<td>AMP-CHL-CIP-SPE-SMX-STR-TMP-TS</td>
<td>7.4</td>
<td>8</td>
</tr>
<tr>
<td>AMP-CHL-SPE-SMX-STR-TMP-TS</td>
<td>74.1</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 1: Antimicrobial Resistance Patterns of S. Typhi and S. Paratyphi B; AMP, ampicillin; CHL, chloramphenicol; CIP, ciprofloxacin; COL, colistin; FFN, florfenicol; GEN, gentamicin; NAL, nalidixic acid; SPE, spectinomycin; STR, streptomycin; SMX, sulfamethoxazole; TET, tetracycline; TMP, trimethoprim; SXT, and trimethoprim-sulfamethoxazole.

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Integron-Positive (n=33)</th>
<th>Integron-negative (n=17)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%S</td>
<td>%R</td>
<td>%S</td>
</tr>
<tr>
<td>AMC</td>
<td>97</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>AMP</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>APR</td>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>CTX</td>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>CHL</td>
<td>6.1</td>
<td>93.9</td>
<td>35.3</td>
</tr>
<tr>
<td>CIP</td>
<td>93.9</td>
<td>6.1</td>
<td>100</td>
</tr>
<tr>
<td>COL</td>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>FFN</td>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>GEN</td>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>NAL</td>
<td>97</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>NEO</td>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>SPE</td>
<td>93.9</td>
<td>6.1</td>
<td>100</td>
</tr>
<tr>
<td>STR</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>SMX</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>TET</td>
<td>97</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>TMP</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>TS</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>XNL</td>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2. Antibiotic susceptibility of integron-positive and integron-negative strains of S. Typhi; %S, percentage susceptible; %R, percentage resistant; AMC, amoxicillin/clavulanic acid; AMP, ampicillin; APR, apramycin, CHL, chloramphenicol; CIP, ciprofloxacin; COL, colistin; CTX, cefotaxime; FFN, florfenicol; GEN, gentamicin; NAL, nalidixic acid; SPE, spectinomycin; STR, streptomycin; SMX, sulfamethoxazole; TET, tetracycline; TMP, trimethoprim; SXT, and trimethoprim-sulfamethoxazole and XNL, ceftiour. Statistical significance (p-Value) was calculated using the Fishers exact test in terms of the number of resistant strains and susceptible strains in the integron-positive and integron-negative groups.

Discussion

In this study nearly all the S. Typhi and S. Paratyphi B isolates were resistant to ampicillin, cotrimoxazole, streptomycin, sulfamethoxazole and trimethoprim, while 84% of S. Typhi and 100% S. Paratyphi B were resistant to chloramphenicol. These findings are consistent with other studies in other regions of the world where it was observed that there
was a huge number of *Salmonella* isolates that were resistant to ampicillin, chloramphenicol and cotrimoxazole [27, 43, 44, 52, 53]. Similar results were reported on the Malawi-Mozambique border in which 100% of *S. Typhi* isolates were found to be resistant to ampicillin, chloramphenicol and sulfamethoxazole-trimethoprim [23]. Another study conducted in Uganda showed that 76% of *S. Typhi* were resistant to ampicillin, streptomycin, sulphisoxazole, tetracycline, and cotrimoxazole, but were susceptible to chloramphenicol [54] compared to 100% ampicillin and cotrimoxazole and 84% to chloramphenicol resistance reported in our study. *S. Typhi* was only completely susceptible to cefotaxime, gentamicin, and spectinomycin. These drugs could be used for treating affected patients.

The high susceptibility rates to fluoroquinolones are important as these antibiotics are alternatives in the treatment of resistant cases [55,56]. In this study fluoroquinolone resistance was found to be low. Reduced resistance to ciprofloxacin was found to be comparatively lower as compared to 15.4% in the Democratic Republic of Congo [30], 100% in Turkey [56], and 81% in the USA [57]. Nalidixic acid resistance was also found to be low in this study compared to other studies [30,58,59]. The sensitivity of the isolates to quinolones and cephalosporins suggests that this group of antibiotics could be used for the treatment of enteric fever cases. However, the use of antimicrobial drugs for the treatment of enteric fever should be carefully monitored in order to avoid the development of drug resistant strains.

This study also demonstrated the occurrence of MDR strains of *S. Typhi* and *S. Paratyphi* B. The commonest resistance pattern was observed with ampicillin, chloramphenicol, sulfamethoxazole, streptomycin, trimethoprim and cotrimoxazole for *S. Typhi* and ampicillin, chloramphenicol, spectinomycin, sulfamethoxazole, streptomycin, trimethoprim and cotrimoxazole for *S. Paratyphi* B. Demczuk and colleagues [5] observed 26 resistance patterns with the commonest patterns being nalidixic acid-resistant (NAR) and ampicillin-chloramphenicol-nalidixic acid-streptomycin-sulphisoxazole-cotrimoxazole in *S. Typhi*. This study demonstrated that most of the isolates were resistant to five or more antibiotics. The MDR detection rate was 84% for *S. Typhi* and 100% for *S. Paratyphi*. Similar findings of MDR strains of *S. Typhi* were reported in Pakistan (58.7%), Vietnam (89.9%) and Turkey (100%) [56, 60, 61]. However, in Tajikistan and the Democratic Republic of Congo resistance was considerably found to be low, 27% and 30.3% [30, 62].

In this study antimicrobial drug resistance could be attributed to the inappropriate use of these drugs and also the use of cotrimoxazole in HIV/AIDS patients as routine prophylaxis for opportunistic infections prevention [63, 64]. The other reason could be that the laws and regulations are not strict enough to control the abuse of antimicrobial drugs in Zambia [65]. A similar observation was made in India and this was attributed to the widespread availability and uncontrolled use of antibiotics, leading to selective pressure on a large bacterial population of endemic *Salmonella* species [58]. These practices, together with horizontal gene transfer, have contributed to the emergence of *Salmonella* isolates that are resistant to commonly used antimicrobial drugs used for therapy.

MDR is known to be associated with integrons, especially those in class I, which are widely distributed among Gram-negative bacteria, and are implicated in the horizontal transfer of drug resistance genes [45,60,66-68]. In our study 66% of *S. Typhi* isolates and 81.5% of *S. Paratyphi* B harboured class I integrons. In contrast an Iranian study found that 23% of *S. Typhi* and 45% of *S. Paratyphi* contained class I integrons [69]. Our findings also support the notion that class I integrons are widespread, especially in Gram negative bacteria, including *Salmonella* species.

Integron-carrying bacterial isolates are usually MDR in nature, whereas integron-lacking isolates are more susceptible to integron-associated antibiotics, and in many cases, they have been associated with the presence of other drug resistance genes, including *aadA, aadB, strA* and *strB* [48,70]. In this study, DNA sequencing of class I integron elements revealed a *dfrA7* gene cassette, which encodes resistance to trimethoprim. All the isolates were resistant to trimethoprim-sulfamethoxazole. Similar studies conducted in Canada and Pakistan showed similar patterns [42,60].

When drug resistance and the presence of integrons were compared, it was revealed that resistance to chloramphenicol was associated with the presence of the integrons, indicating that isolates containing class I integrons were more likely to be resistant to chloramphenicol than those lacking the integrons. This was surprising because no drug resistance gene cassette conferring resistance to chloramphenicol were detected in the integrons.
There was no association between drug resistance to the other drugs tested and the presence of integrons. This finding suggests that resistance to these drugs was due to other drug resistance mechanisms other than those associated with the presence of class I integrons.

Conclusion

This study revealed a high prevalence of MDR S. Typhi and S. Paratyphi B isolates. This is alarming since resistance to first-line drugs will require more expensive drugs for effective treatment of enteric fever. Class I integrons were prevalent in the majority of the isolates, and probably play a major role in MDR mechanisms of S. Typhi and S. Paratyphi B isolates. A better understanding of the factors that potentially contribute to the development and dissemination of drug resistant strains of *Salmonella* could allow for improved measures to treat salmonellosis and minimize antimicrobial resistance.

Acknowledgements: This work was supported by the University of Zambia Staff Development Office and the School of Medicine. We would like to thank the University Teaching Hospital, Department of Pathology and Microbiology, Lusaka, Zambia for providing the isolates and their technical support. We also extend our gratitude to Dr Rene S. Hendriksen from WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens and European Union Reference Laboratory for Antimicrobial Resistance, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark, for providing the integrin positive controls and technical assistance.

Conflict of Interest: The contents of this paper reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein and do not necessarily reflect the views or policies of any institution or agency. This paper does not constitute a standard, specification, nor is it intended for design, construction, bidding, contracting, or permit purposes. The authors have no conflicts of interest.

References

13. Ahmad KA, Khan LH, Roshan B, Bhutta ZA. Factors associated with typhoid relapse in the era

34. Yamasaki S, Nagasawa S, Fukushima A, Hayashi-Nishino M, Nishino K. Cooperation of the multidrug efflux pump and lipopolysaccharides in the intrinsic antibiotic
50. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; M100–S22. 22nd informational supplement 2012.
55. Akinyemi KO, Smith SI, Oyefolu AO, Coker AO. Multidrug resistance in Salmonella enterica serovar typhi isolated from patients with typhoid